model{ for(i in 1:Ns){ k[i]~dbern(p[i]) pred[i]~dbern(p[i]) x[i]<-inprod(IV[i,],b) p[i]<-ilogit(x[i]+error[i]) } # Prior for(i in 1:Ns){ error[i]~dnorm(0,lambda.err) } lambda.err~dgamma(0.001,0.001) for(j in 1:Nt){ b[j]~dnorm(0,0.0001) } }