model{ for(i in 1:N){ mu[i]<-b0+b1*x[i] y[i]~dt(mu[i],1/sigma^2,tau) # Posterior predictive pred[i]~dt(mu[i],1/sigma^2,tau) } # Priors b0~dnorm(0,0.0001) b1~dnorm(0,0.0001) sigma~dunif(0.001,1000) tau<-ntau+1 ntau~dexp(1/29) }